skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Rodriguez‐Yam, Gabriel A"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. This article considers the problem of modeling a class of nonstationary time series using piecewise autoregressive (AR) processes in the presence of outliers. The number and locations of the piecewise AR segments, as well as the orders of the respective AR processes, are assumed to be unknown. In addition, each piece may contain an unknown number of innovational and/or additive outliers. The minimum description length (MDL) principle is applied to compare various segmented AR fits to the data. The goal is to find the “best” combination of the number of segments, the lengths of the segments, the orders of the piecewise AR processes, and the number and type of outliers. Such a “best” combination is implicitly defined as the optimizer of an MDL criterion. Since the optimization is carried over a large number of configurations of segments and positions of outliers, a genetic algorithm is used to find optimal or near‐optimal solutions. Numerical results from simulation experiments and real data analyses show that the procedure enjoys excellent empirical properties. 
    more » « less
    Free, publicly-accessible full text available July 24, 2026